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Linear Rossby waves in a continuously stratified ocean over a corrugated rough-
bottomed topography are investigated by asymptotic methods. The main results are
obtained for the case of constant buoyancy frequency. In this case there exist three
types of modes: a topographic mode, a barotropic mode, and a countable set of
baroclinic modes. The properties of these modes depend on the type of mode, the
relative height δ of the bottom bumps, the wave scale L, the topography scale Lb and
the Rossby scale Li. For small δ the barotropic and baroclinic modes are transformed
into the ‘usual’ Rossby modes in an ocean of constant depth and the topographic
mode degenerates. With increasing δ the frequencies of the barotropic and topographic
modes increase monotonically and these modes become close to a purely topographic
mode for sufficiently large δ. As for the baroclinic modes, their frequencies do not
exceed O(βL) for any δ. For large δ the so-called ‘displacement’ effect occurs when
the mode velocity becomes small in a near-bottom layer and the baroclinic mode does
not ‘feel’ the actual rough bottom relief. At the same time, for some special values
of the parameters a sort of resonance arises under which the large- and small-scale
components of the baroclinic mode intensify strongly near the bottom.

As in the two-layer model, a so-called ‘screening’ effect takes place here. It implies
that for Lb � Li the small-scale component of the mode is confined to a near-bottom
boundary layer (Lb/Li)H thick, whereas in the region above the layer the scale L of
motion is always larger than or of the order of Li.

1. Introduction
Density stratification and bottom relief produce a strong effect on the dynamics

of low-frequency planetary waves in the ocean. The stratification is responsible for
the existence of a countable number of vertical wave modes, whereas the topography
modifies the dispersion relation and gives rise to topographic waves. Investigation
of the topography effects is a complicated problem, and significant progress in its
consideration has been made only for the case of a one-dimensional relief when the
isobaths are parallel straight lines. The initial work was done by Rhines & Bretherton
(1973), who examined the propagation of barotropic quasi-geostrophic oscillations of
scale L over a sinusoidal bottom relief with horizontal scale Lb. The most important
result of their work is that the rough corrugated relief supports propagating waves
with L > Lb even in the absence of the β-effect. Volosov (1976a, b) generalized these
results to the nonlinear case. The stratified case was considered by Suarez (1971),
McWilliams (1974), Volosov & Zhdanov (1980a, b, 1982, 1983), and Zhdanov (1987).
The case of a random corrugated relief in a barotropic ocean was analysed numerically
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by Sengupta, Piterbarg & Reznik (1992). All these works (except the last one) use the
following constraints on the wave parameters:

βL

f0

<∼
σ

f0

∼ ∆h

H
∼ Lb

L
� 1, (1.1)

where σ is the wavefrequency, f0 is the local Coriolis parameter, β = df/dy, ∆h is a
typical height of the relief irregularities, and H is the mean ocean depth.

Reznik (1986), Samelson (1992), and Reznik & Tsybaneva (1999, referred to here-
after as Part 1) carried out a detailed investigation of waves in a two-layer ocean and
found some new effects. They showed that in a two-layer ocean besides waves with
frequencies satisfying (1.1) there always exists a wave with frequency

σ

f0

= O

(
βL

f0

)
(1.2)

even in the case of a high relief inhomogeneity where

σ

f0

∼ βL

f0

� ∆h

H
. (1.3)

This wave exists due to the stratification, and therefore it is called the baroclinic
mode. For small ∆h when ∆h/H � βL/f0 this mode is transformed into the ‘usual’
baroclinic Rossby mode in a two-layer ocean of constant depth. But if ∆h/H is
sufficiently large so that (1.3) holds, then the baroclinic wave is confined mainly to
the upper layer as if this wave does not ‘feel’ the actual bottom and ‘interprets’ the
interface between the layers as a bottom. In this case the motion in the lower layer
is very weak, although it is necessarily present. This is the so-called ‘displacement’
effect, which is of great interest because the concentration of mesoscale motion in an
upper layer over strong relief inhomogeneities has been observed many times in the
real ocean (Wunsch 1981, 1983; Dickson 1983).

Another important effect (the so-called ‘screening’ effect) is that for Lb < Li (the
internal Rossby scale) the wave component generated by the topography is confined
to the lower layer, whereas in the upper layer the scale of motion L is always greater
than or of the order of Li (also see McWilliams 1974; Zhdanov 1987).

The present paper generalizes some results of the works by Reznik and Tsybaneva
to the case of a continuously stratified ocean. For simplicity, the buoyancy frequency is
assumed to be constant. In § 2 the model under consideration is described. After that
an asymptotic theory of Rossby waves over a rough bottom topography is developed
(§§ 3, 4). In § § 5, 6, and 7 baroclinic modes over a strong periodic rough relief are
investigated by asymptotic methods. Conclusions are stated in § 8.

2. Statement of the problem
Quasi-geostrophic low-frequency oscillations are governed by the well-known equa-

tion of conservation of potential vorticity; in the linear and rigid-lid approximations
we have (cf. Pedlosky 1979):

∂

∂t

[
∆p+

∂

∂z

(
f2

0

N2

∂p

∂z

)]
+ β

∂p

∂x
= 0. (2.1a)

Here p is pressure, t time, x, y, and z the eastward, northward, and vertical coordinates,
respectively; and N = N(z) is the buoyancy frequency. The pressure p satisfies the
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boundary conditions at the ocean surface:

∂2p

∂z∂t
= 0 at z = 0, (2.1b)

and at its bottom:

∂2p

∂z∂t
=
N2

f0

(
∂p

∂y

∂h

∂x
− ∂p

∂x

∂h

∂y

)
at z = −H. (2.1c)

The total ocean depth is assumed to be equal to ht = −H + b(x, y), where H is the
mean depth, and for the depth perturbation we have b� H .

Let the bottom topography be corrugated so that

b = b(y) (2.2)

and let the motion depend harmonically on x and t (cf. Part 1):

p = p̄(y, z)ei(kx−σt). (2.3)

Here k is the eastward wavenumber and σ is the frequency. From (2.1) we obtain the
following problem for the amplitude p̄:

∂2p̄

∂y2
+

∂

∂z

(
f2

0

N2

∂p̄

∂z

)
−
(
k2 +

kβ

σ

)
p̄ = 0, (2.4a)

∂p̄

∂z
= 0, z = 0, (2.4b)

∂p̄

∂z
=
N2

σ

k

f0

dh

dy
p̄, z = −H. (2.4c)

It is convenient to rewrite (2.4) in non-dimensional form using the following
dimensionless variables and parameters:

ŷ =
y

Lb
, ẑ = z

H
, b = ∆hb̂(ŷ), δ = ∆h

H
,

k̂ = kLb, σ̂ = σ
f0

, β̂ =
βLb
f0

, n(z) =
N(z)
N0

,

p̂ =
p̄

P
, α = Li

Lb
, Li = HN0

f0

,

 (2.5)

where N0 and P are the buoyancy-frequency and pressure scales.
Writing (2.4) in non-dimensional form we have

∂2p̂

∂ŷ2
+ α−2 ∂

∂ẑ

(
1

n2

∂p̂

∂ẑ

)
−
(
k̂2 +

k̂β̂

σ̂

)
p̂ = 0, (2.6a)

∂p̂

∂ẑ
= 0, ẑ = 0, (2.6b)

∂p̂

∂ẑ
=
α2k̂δ

σ̂
n2b̂′p̂, ẑ = −1, (2.6c)

where the prime denotes the differentiation with respect to ŷ.
Our task is to investigate the eigenvalue problem (2.6a–c), i.e. to find the eigenval-

ues k̂, σ̂ for which bounded solutions to (2.6a–c) exist with given α, β̂, and δ and to
study the properties of the eigenfunctions.
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The parameters (2.5) satisfy some conditions. Since quasi-geostrophic motion is
considered, the non-dimensional frequency is small:

σ̂ = σ/f0 � 1. (2.7a)

The topography scale Lb is assumed to be no greater than 50 km, and therefore we
have

β̂ = βLb/f0 = O(0.01), (2.7b)

α>∼1. (2.7c)

The typical height of the bottom inhomogeneities is assumed to be much smaller
than the mean depth H , i.e.

δ =
∆h

H
� 1. (2.7d)

Finally, we will consider the case of a rough bottom topography, i.e.

k̂ ∼ Lb

L
� 1. (2.7e)

To simplify the notation, in what follows we drop the ‘hat’ over the non-dimensional

parameters k̂, σ̂, β̂, ŷ, and b̂.

3. Heuristic asymptotic theory
The relationships (1.1) adopted in the majority of the above-mentioned papers can

be written as

δ ∼ σ ∼ k. (3.1)

The simplifying constraint (3.1) makes it impossible to study some important effects, in
particular the case of a strong relief where (1.3) holds. At the same time, problem (2.6)
for arbitrary relationships among the parameters δ, σ, k, α, and β is too complicated.
Therefore we first find a ‘heuristic’ asymptotic solution to system (2.6a–c) for almost
arbitrary δ, σ, k, and α using the approach developed by Reznik (1986), and in Part
1. After that, taking account of this solution, we fix the most interesting relationships
between δ, σ, k, and α and carry out a more rigorous asymptotic analysis of (2.6) (cf.
Part 1).

Thus, the solution is sought in the form

p = p̄(Y , z) + p̃(y, Y , z), (3.2)

where Y = ky is a slow coordinate. The term p̄(Y , z) in (3.2) describes a large-scale
wave component and p̃(y, Y , z) corresponds to the small-scale component generated
by the interaction of the large-scale component with the rough relief. It is assumed
that the component p̃ and its derivatives with respect to z have zero mean value, i.e.〈

∂np̃

∂zn

〉
= 0, n = 0, 1, 2, . . . . (3.3)

The averaging in (3.3) is carried out with respect to the ‘fast’ coordinate y:

〈a〉 = lim
L→∞

1

2L

∫ L

−L
a(y) dy. (3.4)

Another assumption implies that p̄ and p̃ are ‘smooth’ functions of y, Y , and z.
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The smoothness of a function f(y, Y , z) means that its derivatives with respect to y,
Y , and z are of the order of the function itself, i.e.

∂m+n+kf

∂ym∂Y n∂zk
= O(f), m = 0, 1, 2, . . . , n = 0, 1, 2, . . . , k = 0, 1, 2, . . . , (3.5)

regardless of the relationships among δ, σ, k, and α.
We now substitute (3.2) into (2.6) and average the resulting equations with respect

to y. Taking into account (3.3) we arrive at a set of equations for the large-scale
component:

k2p̄Y Y + α−2 ∂

∂z

(
1

n2

∂p̄

∂z

)
−
(
k2 +

kβ

σ

)
p̄ = 0, (3.6a)

∂p̄

∂z
= 0, z = 0, (3.6b)

∂p̄

∂z
= s〈b′p̃〉, z = −1, (3.6c)

where s = α2kδn2(−1)/σ. Subtraction of (3.6a–c) from (2.6a–c) yields for the small-
scale component:

∂2p̃

∂y2
+ α−2 ∂

∂z

(
1

n2

∂p̃

∂z

)
= 0, (3.7a)

∂p̃

∂z
= 0, z = 0, (3.7b)

∂p̃

∂z
= s
(
b′p̄+ b′p̃− 〈b′p̃〉), z = −1. (3.7c)

In view of (2.7c) and the inequality

βk

σ
� 1, (3.8)

which follows from (2.7b) when writing (3.7) we neglect the small terms.
Let the small-scale component be smaller than the large-scale one:

p̃� p̄ (3.9)

(we will verify this assumption a posteriori). Then the boundary condition (3.7c) is
simplified to

∂p̃

∂z
= sb′p̄, z = −1. (3.10)

The simplified condition (3.10) together with (3.7a, b) allows the small-scale component
p̃ to be expressed in terms of the large-scale component p̄ and the problem (3.6) for
p̄ to be closed.

We consider the case when the depth perturbation b(y) is represented as a super-
position of a finite number of harmonics in the form

b =

m=M∑
m=−M

bmeilmy, (3.11)

where |lm|>∼1, lm = −l−m, bm = b∗−m, and M is finite (the asterisk denotes the complex

conjugate). The solution to the problem (3.7a, b), (3.10), (3.11) can be written in the
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form

p̃ = isp̄(−1)

m=M∑
m=−M

lmbmp̃m(z)eilmy, (3.12)

where the coefficients p̃m(z) are solutions to

d

dz

(
1

n2

dp̃m
dz

)
− α2l2mp̃m = 0, (3.13a)

dp̃m
dz

= 0, z = 0, (3.13b)

dp̃m
dz

= 1, z = −1. (3.13c)

Substituting (3.12) into (3.6c) we obtain

∂p̄

∂z
= −s2Dp̄, z = −1, (3.14)

where D is a positive coefficient:

D =

m=M∑
m=−M

l2m
∣∣bm∣∣2∣∣p̃m(−1)

∣∣. (3.15)

When deriving (3.15) we use the relation

p̃m(−1) = −n2(−1)

∫ 0

−1

[
1

n2

(
dp̃m
dz

)2

+ α2l2mp̃
2
m

]
dz < 0, (3.16)

which is readily implied by (3.13).
Equation (3.6a) and the boundary conditions (3.6b) and (3.14) form a closed

problem for the large-scale component p̄. Knowing p̄ we can calculate the small-scale
component p̃ by formula (3.12). The problem is simplified in the case of a constant
buoyancy frequency (n(z) = 1). The functions p̃m are readily found from (3.13):

p̃m = − cosh αlmz

αlm sinh αlm
. (3.17)

Accordingly, the coefficient D and function p̃ take the form

D =
1

α

m=M∑
m=−M

lm|bm|2 coth αlm, (3.18)

p̃ = −ip̄(−1)
αkδ

σ

m=M∑
m=−M

cosh αlmz

sinh αlm
bmeilmy. (3.19)

The large-scale component p̄ is sought in the form of a harmonic wave (cf. Reznik &
Tsybaneva 1999)

p̄ = p0(z)e
il̄Y , (3.20)

where the northward wavenumber l̄ is assumed to be of the order of 1. By virtue
of (3.6a, b), the amplitude p0(z) is given by the formula

p0 = A cosh

(
αz

(
κ2 +

kβ

σ

)1/2)
, (3.21a)
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where κ = (k, kl̄) is the wave vector and A is an arbitrary constant. Substituting (3.21a)
into the bottom boundary condition (3.14) we obtain the dispersion relation in the
form:

σ2α

(
κ2 +

kβ

σ

)1/2

tanh

(
α

(
κ2 +

kβ

σ

)1/2)
= α4k2δ2D. (3.21b)

In view of (3.19), the applicability condition (3.9) for the theory under consideration
can be represented as

B =
αkδ

σ
� 1. (3.22)

Let L be of the order of the Rossby scale Li. In this case we have Lb � Li, and
therefore α � 1, and, consequently, the expression for the small-scale component
(3.19) can be approximated by

p̃ = −ip0(−1)B

m=M∑
m=−M

bm sgn lmeilmy−α|lm|(1+z) + O(e−α|lm|). (3.23)

Thus, if the relief scale Lb is less than the Rossby scale Li, then the small-scale
component is confined to a thin near-bottom layer (Lb/Li)H thick. Recall (for more
details see Part 1) that in the two-layer model the analogous small-scale component
is concentrated in the lower layer when Lb � Li.

4. Analysis of the dispersion relation
(a) Constant depth. Let the ocean have a constant depth, i.e. δ = 0 in (3.21b). In

this case (3.21b) has non-trivial solutions only if k is negative and

κ2 +
kβ

σ
< 0; (4.1)

the frequency σ is always assumed to be positive. The dispersion relation (3.21b) takes
the form

tan

(
α

(
− κ2 − kβ

σ

)1/2)
= 0, (4.2)

whence we obtain a countable set of the roots:

σ(0)
n = − kβ

κ2 + α−2π2n2
, n = 0, 1, . . . . (4.3)

It is clear that (4.3) determines the dispersion relations for the barotropic (n = 0)
and baroclinic (n > 1) Rossby waves in a stratified ocean of constant depth.

(b) Topographic waves. Let β = 0, i.e. let the β-effect be neglected. It follows from
(3.21b) that

σ
(0)
tp = α2δ(D)1/2|k|

(
coth ακ

ακ

)1/2

. (4.4)

Thus, the corrugated relief supports propagating waves even without β-effect (cf.
Rhines & Bretherton 1973; Part 1). Using (3.19), (3.18), and (4.4) one can readily
show that B � 1, and thus the assumption (3.9) of our asymptotic analysis is fulfilled.

In the long-wave limit, L� Li, we have ακ� 1, and the large-scale component p̄
is practically barotropic (see (3.21a)). If L = O(Li), then we have ακ = O(1), and p̄
gradually increases with increasing z. These characteristics agree with the behaviour
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g

σσtp

g1 (σ)

g2 (σ)

(a)

g

σ3

g2 (σ)
(b)

g2 (σ) g2 (σ) g2 (σ)
g1 (σ)

σ2 σ1 σbt σ

Figure 1. Graphical solution of the dispersion equation (3.21b). Dash-dot line represents vertical
and horizontal asymptotes of the function g2(σ). (a) k > 0. The solution represents the topographic
mode σtp. (b) k < 0. Countable number of solutions represent the barotropic σbt and the baroclinic
σn, n = 1, 2, . . . modes. Asterisks and circles denote the zeros σ∗n , n = 1, 2, . . . of the function g2(σ)
and the intersection points σ(0)

n , n = 0, 1, . . . of the vertical asymptotes with the σ-axis respectively.

of topographic waves in the two-layer model (Part 1). At the same time the waves
under study essentially differ from barotropic and two-layer topographic waves. The
frequencies of these topographic waves are of the order of the relative height of the
relief inhomogeneity, i.e.

σ = O(δ). (4.5)

In a continuously stratified ocean the topographic wave frequency essentially de-
pends on the stratification because the parameter α in (4.4) is proportional to N0.

(c) General case. To analyse (3.21b) it is convenient to fix all parameters except σ.
We need to find the points of intersection for the graphs of the functions

g1(σ) =
σ2

α4k2δ2D
, g2(σ) =

coth
(
α(κ2 + βk/σ)1/2

)
α(κ2 + βk/σ)1/2

. (4.6)

These graphs are shown in figures 1(a) and 1(b) for k > 0 and k < 0, respectively.
The intersection points of the vertical asymptotes of g2(σ) with the σ-axis are σ(0)

n (see
(4.3)) and

σ∗n = − βk

κ2 + α−2π2(n− 1/2)2
, n = 1, 2, . . . , (4.7)
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σ
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L
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bt
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Figure 2. Dependence of the mode frequencies on the relative height δ of the topography for
given wavenumbers k, l. |k| = l = 0.01 km(−1), k > 0 for the topographic mode and k < 0
for the baroclinic and barotropic modes. The following dimensional parameters are chosen
β = 2 × 10−8 km−1 s−1, f0 = 6 × 10−5 s−1, Li = 100 km, Lb = 10 km; in (3.21b) α = 10, D = 10.
The curves bt, tp, bc1, and bc2 correspoind to the barotropic, topographic, 1st and 2nd baroclinic
modes, respectively.

are the zeros of g2(σ). It is seen from figure 1 that the following set of wave modes
exists here:

(i) topographic mode (k > 0) with frequency σtp:

0 < σtp 6 σ
(0)
tp ; (4.8a)

(ii) barotropic mode (k < 0) with frequency σbt:

σ
(0)
0 6 σbt < ∞; (4.8b)

(iii) baroclinic modes (k < 0) with frequencies σn:

σ(0)
n 6 σn 6 σ

∗
n , n = 1, 2, . . . . (4.8c)

We now examine the effect of the height of the relief inhomogeneity on these modes;
to do this we vary δ as the other parameters remain fixed. One can readily see that
for δ → 0 the coefficient of the parabola g1(σ) tends to infinity, and therefore the
topographic mode degenerates (σtp → 0), whereas the barotropic (σbt) and baroclinic
(σn, n = 1, 2, . . .) modes are transformed into the corresponding Rossby modes in the
ocean of constant depth: σbt → σ

(0)
0 , pbt → const; σn → σ(0)

n , and

p0n → p
(0)
0n = A cos(πnz), n = 1, 2, . . . , (4.9a)

as δ → 0. It is this property of the modes under consideration that accounts for their
names (cf. Part 1).

Conversely, with increasing δ the coefficient of the parabola g1(σ) decreases, and
the frequencies σtp and σbt increase, tending to the frequency of the pure topographic
mode (4.4). The behaviour of the baroclinic modes is more non-trivial. Their frequen-
cies σn also somewhat increase with increasing δ but they tend to σ∗n and therefore
the baroclinic modes remain low-frequency oscillations over the strong relief. All these
characteristics are clearly seen in figure 2.

The spatial structure of the baroclinic modes significantly changes with increasing
height of the relief inhomogeneity. For the vertical profile p0n of the large-scale
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baroclinic component we have

p0n → p∗0n = A cos
(
π(n− 1

2
)z
)
, n = 1, 2, . . . , (4.9b)

as δ increases. The comparison of (4.9a) and (4.9b) shows that the large-scale com-
ponent p̄ decreases near the bottom as δ increases. Accordingly, the small-scale
component p̃ also reduces with decreasing p0n(−1) (see (3.19)).

Thus, as in the case of the two-layer model (Part 1), the effect of ‘displacement’
manifests itself. As the height of the relief inhomogeneity increases the large-scale
baroclinic motion in the bottom layer decreases, and, in turn, this causes a decrease
in the small-scale component. The resulting effect is that the strong relief displaces
the baroclinic motion from the near-bottom layer.

For a more accurate analysis we rewrite the dispersion relation (3.21b) as follows:

γ2σ̃2 =
coth

(
ακ(1 + σ̃−1 sgn k)1/2

)
ακ(1 + σ̃−1 sgn k)1/2

, (4.10)

where

γ2 =
β2

α4κ4δ2D
, σ̃ =

κ2σ

β|k| . (4.11)

The parameter σ̃ is equal to the ratio of the oscillation frequency to the barotropic
Rossby wave frequency.

We now examine the important case where the scale L has the same order of
magnitude as the Rossby scale Li, i.e.

ακ ' Li

L
= O(1), α =

Li

Lb
� 1. (4.12)

Let us investigate (4.10) for different values of the parameter γ, which, under the
constraint (4.12), is

γ = O

(
βα1/2

δ

)
. (4.13)

The results of the analysis of (4.10) are presented in table 1 (cf. table 1 in Part 1).
As is seen from table 1, the effect of the bottom relief is weak if γ � 1 and strong
for γ � 1.

This classification of the relief differs significantly from that in the two-layer case.
In the two-layer model (Part 1) the efficiency of the topography for L ' Li is
determined by the parameter ∆ = δ/αβ characterizing the relative contributions of
the topography and β-effect. In the case under consideration the effect of the relief
depends on the parameter γ = 1/(∆α1/2)� ∆−1, i.e. the relief efficiency is significantly
higher than in the two-layer case (for example, ∆ ' 1 corresponds to a moderate relief
in the two-layer case and to a strong relief for N = const because γ � 1 for ∆ = 1).
However, note that for the actual profile N(z) this distinction from the two-layer
model can be softened considerably because the buoyancy frequency in the abissal
region is small compared to the main thermocline. Accordingly, the parameter s
in (3.10), which, ultimately, determines the relief efficiency, can be very small.

As is seen from table 1, the condition (3.22) of applicability for the presented
dispersion relations holds well in all the cases except for the baroclinic modes over
a strong relief for which the applicability condition can be rewritten in the following
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Weak relief (γ � 1) Strong relief (γ � 1)

Topographic mode (k > 0)
σ =

α2D2/3δ4/3k

β1/3
σ = σ

(0)
tp

α−1 � δ

β
� α1/2 = α2δk

(
D cotanh(ακ)

ακ

)1/2

1� α1/2 � δ

β

Barotropic mode (k < 0) σ = σ
(0)
0 = −βk

κ2
σ = σ

(0)
tp

δ

β
� α1/2 = −α2δk

(
D cotanh(ακ)

ακ

)1/2

1� α1/2 � δ

β

Baroclinic modes (k < 0) σ = σ(0)
n σ = σ∗n

= − βk

κ2 + α−2π2n2
= − βk

κ2 + α−2π2(n− 1
2
)2

δ

β
� min

{
α1/2,

α

π2n2

}
, α1/2 � δ

β
� α

π2(n− 1
2
)2
,

n = 1, 2, . . . n = 1, 2, . . .

Table 1. Characteristics of the oscillation modes.

way:

(LiLb)
1/2

a
� δ � Li

π2(n− 1/2)2a
, n = 1, 2, . . . , (4.14a)

where a = f0/β. For typical scales (Li = 100 km and a = 3000 km) the inequality
(4.14a) gives

10−2 � δ � 3× 10−3

(n− 1/2)2
, n = 1, 2, . . . . (4.14b)

As is seen from (4.14b), condition (4.14a) fails even for the first baroclinic mode (n = 1).
The lower bound in (4.14a) diminishes with decreasing relief scale Lb (cf. Part 1).

When Lb = 10 m, the lower bound in (4.14a) is about 3×10−4, and (4.14a) is satisfied
crudely for δ = 10−3. An analysis of the baroclinic mode with a physically reasonable
scale Lb requires that the constraint (3.22) on the wave parameters be abandoned. An
asymptotic analysis of baroclinic waves for B ∼ 1 is presented in the next Section.

5. Baroclinic modes over strong relief
We now consider again problem (2.6) with N = const, i.e. n(z) = 1. The scale L

is assumed to be of the order of Li, and therefore (4.12) holds. We will restrict our
consideration to baroclinic modes (which are the most interesting for applications),
whose dimensional frequencies are of the order of βL irrespective of the relief height
(see table 1). In view of (4.12), the dimensionless frequency σ of this mode is of the
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z

z = 0

z = –1

I

B ε

Figure 3. A sketch of the near-bottom boundary layer (B) and the interior region (I).

order of αβ, and for the parameter B in (3.22) we have

B =
αkδ

σ
= O

(
δ

αβ

)
. (5.1)

We examine the case of a sufficiently high relief inhomogeneity where

δ ∼ σ ∼ αβ, (5.2)

and therefore, in contrast to §§ 3 and 4,

B ∼ 1. (5.3)

System (2.6) can be rewritten conveniently in the form

∂2p

∂y2
+ ε2

∂2p

∂z2
− ε2Ap = 0, (5.4a)

∂p

∂z
= 0, z = 0, (5.4b)

∂p

∂z
=
B

ε
b′p, z = −1, (5.4c)

where

ε = α−1 � 1, A = α2

(
k2 +

kβ

σ

)
∼ 1. (5.5)

The solution derived in § 3 suggests that a boundary layer of thickness ε is formed
near the bottom (region B in figure 3); in the interior (region I) the pressure p depends
‘smoothly’ on z. The problem also involves various horizontal scales, and therefore it
is reasonable to use the method of multiple scales here. Accordingly, the solution in
region I is sought in the form

p = pI = p0(y, z, Y1, Y2, . . .) + εp1(y, z, Y1, Y2, . . .) + · · · , (5.6a)

and in region B we write

p = pI + p̂0(y, ζ, Y1, Y2, . . .) + εp̂1(y, ζ, Y1, Y2, . . .) + · · · . (5.6b)

Here Ym = εmy, m = 1, 2, . . . are slow variables, ζ = (1 + z)/ε is the stretched
boundary-layer variable, and

p̂k → 0, ζ → +∞, k = 0, 1, 2 . . . . (5.7)

In addition, the functions pk , p̂k , k = 0, 1, . . . must be bounded in both the fast
variable y and the slow variables Ym, m = 1, 2, . . . .
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Substituting (5.6a) into (5.4a) we obtain

∂2p0

∂y2
= 0, (5.8a)

∂2p1

∂y2
+ 2

∂2p0

∂y∂Y1

= 0, (5.8b)

∂2p2

∂y2
+ 2

∂2p1

∂y∂Y1

+ 2
∂2p0

∂y∂Y2

+Mp0 = 0, (5.8c)

∂2p3

∂y2
+ 2

∂2p2

∂y∂Y1

+ 2
∂2p1

∂y∂Y2

+ 2
∂2p0

∂y∂Y3

+ 2
∂2p0

∂Y1∂Y2

+Mp1 = 0, (5.8d)

where

M =
∂2

∂Y 2
1

+
∂2

∂z2
− A. (5.8e)

An analysis of equations (5.8) shows that the boundedness for y → ±∞ implies
that pk does not depend on y, i.e.

pk = pk(z, Y1, Y2, . . .), k = 0, 1, . . . . (5.9)

Taking (5.9) into account we obtain from (5.8) the relations

Mp0 = 0, (5.10a)

Mp1 = −2
∂2p0

∂Y1∂Y2

, (5.10b)

etc. Substituting (5.6a) into (5.4b) and using (5.7) we derive the following boundary
conditions for pk , k = 0, 1, . . . at the ocean surface:

∂pk

∂z
= 0, z = 0, k = 0, 1, . . . . (5.11)

Similarly, substituting (5.6b) into (5.4a, c) we obtain the equations

∆p̂0 = 0, (5.12a)

∆p̂1 = −2
∂2p̂0

∂y∂Y1

, (5.12b)

∆p̂2 = −2
∂2p̂1

∂y∂Y1

− 2
∂2p̂0

∂y∂Y2

− ∂2p̂0

∂Y 2
1

+ Ap̂0 (5.12c)

and the boundary conditions at the bottom (z = −1):

∂p̂0

∂ζ
= Bb′(p0 + p̂0), (5.13a)

∂p̂1

∂ζ
+
∂p0

∂z
= Bb′(p1 + p̂1), (5.13b)

∂p̂2

∂ζ
+
∂p1

∂z
= Bb′(p2 + p̂2), (5.13c)

where

∆ =
∂2

∂y2
+

∂2

∂ζ2
.
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The scheme of the solution is the following. Given pk(−1) and (∂pk/∂z)(−1), the
equations for p̂k , k = 0, 1, . . . , are analysed (each of the problems is given by the
corresponding equation (5.12) and boundary conditions (5.7), (5.13)). The solvability
conditions of the equations for p̂k determine the relationships between pk(−1) and
(∂pk/∂z)(−1), i.e. the boundary conditions for pk at z = −1. Knowing these conditions
and using (5.10), (5.11) one can determine the functions pk and the dispersion relation.

Realization of this algorithm is a too complicated problem even for the almost
periodic relief (3.11), and we examine here the sinusoidal topography

b = sin y. (5.14)

The solution to (5.12a), (5.13a), (5.7) is sought in the form of a series

p̂0 =

∞∑
n=1

a(0)
n cos ny e−nζ , (5.15)

satisfying (5.7) and (5.12a). Substitution of (5.15) into (5.13a) gives the following
relations for a(0)

n :

a
(0)
1 = 0, a

(0)
2 = −2p0(−1), (5.16a, b)

a
(0)
n+1 + a

(0)
n−1 = −2n

B
a(0)
n , n = 2, 3, . . . . (5.16c)

Relations (5.16c) can be regarded as a second-order finite-difference equation for the
coefficient a(0)

n , and (5.16a, b) are the ‘initial’ conditions for this equation. The general
solution to (5.16) can be written as (cf. Gradshteyn & Ryzhik 1965)

a(0)
n = (−1)n

[
C

(0)
1 Jn(B) + C

(0)
2 Yn(B)

]
, n = 1, 2, . . . , (5.17)

where Jn(B), Yn(B) are the Bessel functions of the first and the second kind, respectively
and C

(0)
1 and C

(0)
2 are some arbitrary constants. Substituting (5.17) into (5.16a, b) we

obtain the equations for C (0)
1 , C (0)

2 :

C
(0)
1 J1(B) + C

(0)
2 Y1(B) = 0, (5.18a)

C
(0)
1 J2(B) + C

(0)
2 Y2(B) = −2p0(−1). (5.18b)

The functions Jn(B) and Yn(B) behave in the following way as n→∞ (cf. Gradshteyn
& Ryzhik 1965):

Jn(B) = O

(
n−1/2

(
2n

eB

)−n)
, Yn(B) = O

(
n−1/2

(
2n

eB

)n)
, (5.19)

and therefore series (5.15) converges only if

C
(0)
2 = 0. (5.20)

Equations (5.18a, b) take the form

C
(0)
1 J1(B) = 0, C

(0)
1 J2(B) = −2p0(−1). (5.21)

We first assume that

B 6= ±j1,s, (5.22)

where j1,s, s = 1, 2, . . . are the positive zeros of the function J1(x). Under this condition
we have J1(B) 6= 0, and it follows from (5.21) that

C
(0)
1 = 0, p0(−1) = 0. (5.23a, b)
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By virtue of (5.20), (5.23a),

p̂0 = 0, (5.24)

i.e. expansion (5.6b) for the small-scale bottom boundary layer component begins with
a term of the order of ε. At the same time, conditions (5.11) and (5.23b) together with
equation (5.10a) determine completely the problem for the large-scale component p0.
Let p0 depend harmonically on Y1 (cf.(3.20)):

p0 = p̄0(z, Y2, Y3, . . .)e
il1Y1 , l1 ∼ 1. (5.25)

Then it follows from (5.10a), (5.11), (5.23b), and (5.5) that a countable number of
baroclinic modes with dispersion relations

σ = σ∗n = − kβ

κ2 + α−2π2(n− 1/2)2
, n = 1, 2, . . . , (5.26a)

and eigenfunctions

p0 = p∗0n = Q0(Y2, Y3, . . .) cos
(
π(n− 1/2)z

)
eil1Y1 , n = 1, 2, . . . , (5.26b)

correspond to the wave vector κ = (k, l1/α). Thus, in the case of higher relief
inhomogeneity when we have B ∼ 1 (unlike B � 1 in § 4) the effect of displacement
of motion from the near-bottom layer also takes place.

The solution for p̂1 is sought in the form of a series similar to (5.15):

p̂1 =

∞∑
n=1

a(1)
n cos ny e−nζ , (5.27)

which, in view of (5.24), satisfies (5.12b). It follows from (5.13b) that the coefficients
a(1)
n obey the relations

a
(1)
1 =

2

B
p0z(−1), a

(1)
2 = − 4

B2
p0z(−1)− 2p1(−1), (5.28a, b)

a
(1)
n+1 + a

(1)
n−1 = −2n

B
a(1)
n , n = 2, 3, . . . . (5.28c)

The general solution of (5.28c) has the form (cf. (5.17))

a(1)
n = (−1)n

[
C

(1)
1 Jn(B) + C

(1)
2 Yn(B)

]
, n = 1, 2, . . . . (5.29)

Substituting (5.29) into (5.28a, b) with C
(1)
2 = 0 we obtain after some simple algebra

the formulas

p1(−1) = − J0(B)

BJ1(B)
p0z(−1), (5.30a)

a(1)
n = (−1)n+1 2Jn(B)

BJ1(B)
p0z(−1), n = 1, 2, . . . . (5.30b)

Formulas (5.30b) determine completely the solution (5.27) for p̂1 (in view of (5.19)
this series converges very rapidly). Relation (5.30a) is a ‘missing’ boundary condition
for p1 at the bottom making it possible to find p1 from (5.10b), (5.11), (5.30a) and
to determine the Y2-dependence of p0 from the requirement that p1 be bounded as
a function of Y1. Evidently, this procedure can be continued to attain any required
accuracy.
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6. Resonance case
Let condition (5.22) be violated, i.e. let the parameter B coincide with one of the

zeros of J1(x):
B = B0 = ±j1,s, s = 1, 2, . . . , J1(B0) = 0. (6.1)

Since B is assumed to be of the order of 1 (see (5.3)), only the case B0 = ±j1,1 =
±3.83 . . . is of practical interest. One can readily see that the solution obtained in
the preceding Section fails under condition (6.1): the first relation in (5.21) is fulfilled
identically, whereas the second one gives

C
(0)
1 = −2p0(−1)

J2(B0)
(6.2)

(cf. (5.23)). Using (5.17), (6.2), and (5.20) one can write the coefficients a(0)
n in (5.15)

as follows:

a(0)
n = (−1)n+1 2p0(−1)

J2(B0)
Jn(B0), n = 1, 2, . . . . (6.3)

So, in contrast to the foregoing case, an analysis of the lowest small-scale correction p̂0

does not permit the boundary condition for p0 at the bottom to be determined. The
solution for p0 satisfying (5.10a), (5.11) and harmonically depending on Y1 can be
written as

p0 = Q0(Y2, Y3, . . .) cos (z(−A− l21)1/2)eil1Y1 . (6.4)

To determine the bottom boundary condition for p0 we examine the problem
(5.12b), (5.7), and (5.13b) for p̂1. The solution to (5.12b) is sought in the form of a
sum

p̂1 = p̂10 + p̂11, (6.5)

where

p̂10 = −
∞∑
n=2

∂a(0)
n

∂Y1

ζ sin (ny)e−nζ (6.6a)

is a particular solution to (5.12b) and

p̂11 =

∞∑
n=1

(
a(1)
n cos (ny) + d(1)

n sin (ny)
)
e−nζ (6.6b)

is a solution to (5.12b) with a zero right-hand side. Substituting p̂1 into the bottom
condition (5.13b) we obtain a relation determining the coefficients a(1)

n , d(1)
n in (6.6b).

The system for a(1)
n coincides with (5.28) for B = B0, and therefore the solution for a(1)

n

is given by formula (5.29) with B = B0. Relations (5.30) change in the following way:

p0z(−1) = 0, (6.7a)

a(1)
n = (−1)n+1 2Jn(B0)

J2(B0)
p1(−1). (6.7b)

The system for the coefficients d(1)
n has the form

d
(1)
1 +

B0

2
d

(1)
2 = 0, (6.8a)

d
(1)
n+1 + d

(1)
n−1 +

2n

B0

d(1)
n = − 2

B0

∂a(0)
n

∂Y1

, n = 2, 3, . . . . (6.8b)

The solution to (6.8a, b) tending to zero as n→∞ is given in the Appendix.
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Relation (6.7a) is a ‘missing’ condition for the large-scale component p0 at the
bottom. From (6.4) and (6.7a) we obtain the leading term in the large-scale component

p0 = p
(0)
0n = Q0(Y2, Y3, . . .) cos (πnz)eil1Y1 (6.9a)

and the corresponding dispersion relation

σ = σ(0)
n = − kβ

κ2 + α−2π2n2
, n = 0, 1, . . . . (6.9b)

The frequency σ and the wave vector κ must satisfy, in addition to (6.9b), the
condition (6.1), which can be rewritten as

σ = σs = −αδk
j1,s

, s = 1, 2, . . . . (6.9c)

Thus, with the constraint (6.1) the leading term p̂0 in the expansion (5.6b) for
the small-scale component is non-zero in contrast to the case B 6= j1,s considered
in § 5. In other words, a kind of resonance arises for B = j1,s when the amplitude
of the near-bottom small-scale component increases strongly (it is ε−1 times as large
as in the non-resonance case B 6= j1,s) and the small-scale velocity exceeds the
large-scale one in the near-bottom boundary layer. Moreover, in contrast to the non-
resonance case, the large-scale component (6.9a) does not vanish when approaching
the bottom; on the contrary, it has a local maximum here. Thus, if the frequency σ and
the wavenumber k satisfy the constraint (6.9c), then both the small- and large-scale
components intensify strongly near the bottom. A similar resonance effect manifesting
itself in the intensification of the wave in the lower layer takes place in the two-layer
model as well (Part 1).

7. Transient solution
The non-resonance solution constructed in § 5 fails when B tends to B0 because the

coefficients a(1)
n in (5.30b) tend to infinity as B → B0. To obtain the solution in the

transition region between the resonance and non-resonance modes we introduce the
stretched variable

ξ =
B − B0

ε
. (7.1)

The solution coincides with the resonance solution for ξ = 0 and tends to the
non-resonance one as ξ →∞; in the transition region ξ = O(1).

We now write the boundary condition (5.4c) using the parameter ξ:

∂p

∂z
=

(
B0

ε
+ ξ

)
b′p, z = −1, (7.2)

and assume the expansions (5.6a, b) to depend on ξ in the transition region. Evidently,
when substituting (5.6) into (5.4a, b) and (7.2) only the boundary conditions (5.13)
at z = −1 (ζ = 0) change:

∂p̂0

∂ζ
= B0b

′(p0 + p̂0), (7.3a)

∂p̂1

∂ζ
+
∂p0

∂z
= B0b

′(p1 + p̂1) + ξb′(p0 + p̂0), (7.3b)

∂p̂2

∂ζ
+
∂p1

∂z
= B0b

′(p2 + p̂2) + ξb′(p1 + p̂1), (7.3c)

whereas equations (5.8)–(5.12) remain the same.
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The equation and the boundary conditions for p̂0 are the same as those in § 6, and
therefore p̂0 is given by formulas (5.15), (6.3). The large-scale component p0 satisfy-
ing (5.10a), (5.11) is given by expression (6.4). The boundary condition for p0 at z = −1
is found from an analysis of the function p̂1, which has the form (6.5), (6.6a, b). Sub-
stituting (6.5) and (6.6) into (7.3) we obtain the following non-homogeneous system
for a(1)

n :

a
(1)
1 =

2

B0

p0z(−1), (7.4a)

a
(1)
2 = − 2

B0

{
2

B0

p0z(−1) + B0p1(−1) + ξp0(−1) +
ξ

2
a

(0)
2

}
, (7.4b)

a
(1)
n+1 + a

(1)
n−1 +

2n

B0

a(1)
n =

2ξn

B2
0

a(0)
n , n = 2, 3, . . . , (7.4c)

where a(0)
n are given by (6.3). For d(1)

n we again have the system (6.8). The general
solution to (7.4) is sought in the form

a(1)
n = (−1)n

{
C

(1)
1 Jn(B0) + C

(1)
2 Yn(B0) + r(1)

n

}
, n = 1, 2, . . . , (7.5)

where C (1)
1 and C

(1)
2 are arbitrary constants and r(1)

n is a particular solution to (7.4c)
tending to zero as n→ ∞. The application of the method of variation of parameters
results in (see the Appendix)

r(1)
n =

4ξp0(−1)

B2
0J2(B0)

s(1)
n , (7.6a)

where

s(1)
n =

πB0

2

{
Jn(B0)

n−1∑
k=1

kJk(B0)Yk(B0) + Yn(B0)

∞∑
k=n

kJ2
k (B0)

}
. (7.6b)

It follows from the boundedness of a(1)
n at n → ∞ that C (1)

2 = 0. Substituting (7.5)
into (7.4a) and (7.4b) we derive the equation

p0z(−1) +
2ξs(1)

1

B0J2(B0)
p0(−1) = 0, (7.7)

which is the missing boundary condition for p0. Substitution of (6.4) into (7.7) gives
the dispersion relation

tan γ =
λ

γ
, (7.8a)

where

λ = − 2ξs(1)
1

B0J2(B0)
, (7.8b)

γ = (−A− l21)1/2. (7.8c)

Figure 4 shows that equation (7.8a) has a countable set of non-negative roots:

γ = γn(ξ), n = 1, 2, . . . . (7.9a)

whence

σ = σ̄n = − kβ

κ2 + α−2γ2
n

, κ2 = k2 +
l21
α2
, n = 1, 2 . . . . (7.9b)
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tanγ tanγ

γ1

π
2

π
2

– 3π
2

λ
γ

Figure 4. Graphical solution of the dispersion equation (7.8a) for λ < 0.

Formulas (7.8a, b) imply that

γn → πn, σ → σ(0)
n , at |ξ| → 0, n = 1, 2 . . . , (7.10)

i.e. the solution tends to the resonance solution given by (6.9), (5.15), and (6.3) as
ξ → 0 (B → B0). However, if |ξ| → ∞ (B moves away from B0), then

γn → π(n− 1
2
), σ → σ∗n as |ξ| → ∞, n = 1, 2, . . . , (7.11)

i.e. the solution approaches the baroclinic mode over a strong relief defined by (5.24),
(5.26a, b).

8. Discussion and conclusions
We have investigated linear Rossby waves in a continuously stratified ocean with

a corrugated rough-bottom topography (the isobaths are parallel straight lines). The
solution is obtained for the case of a constant buoyancy frequency. The asymptotic
theory developed is valid over a wide range of the parameters Lb/L, βL/f0, Lb/Li,
and ∆h/H . There exist three types of modes: a topographic mode, a barotropic mode,
and a countable set of baroclinic modes. As ∆h → 0 the barotropic and baroclinic
modes are transformed into the ‘usual’ barotropic and baroclinic Rossby waves in an
ocean of constant depth. The topographic mode degenerates in the limit of constant
depth because its frequency tends to zero for ∆h→ 0.

These modes are in many respects similar to the modes in a two-layer ocean that
were investigated in Part 1. For example, the so-called ‘screening’ effect also occurs
in the case under consideration. Here it implies that for Lb � Li the small-scale
component of the wave is confined to the near-bottom boundary layer (Lb/Li)H
thick, whereas in the region outside the layer the scale L of motion is always greater
than or of the order of Li (also see McWilliams 1974 and Zhdanov 1987).

The structure and frequencies of the modes substantially depend on the type of
mode, the relative height ∆h/H of the bottom bumps, the wave scale L, the topography
scale Lb, and the Rossby scale Li. Let

L ' Li (8.1)

in this case the topography effect is determined by the parameter

γ =
β

α2κ2δD
= O

(
βα1/2

δ

)
= O

(
1

∆α1/2

)
, (8.2)
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where ∆ = (∆h/H)/(L/a) is a measure of relative contributions of the topography
and β-effect.

The case γ � 1 corresponds to a weak topography where the barotropic and
baroclinic modes are close to those in an ocean of constant depth and the topographic
mode degenerates (its dimensionless frequency is O(γ−4/3) for γ � 1). In the case γ ∼ 1
the topography effect is moderate: the frequencies of the topographic and barotropic
modes and of the first baroclinic mode are of the same order, O(βLi). The amplitude
of the near-bottom small-scale velocity field is α1/2 times as great as that of the
large-scale velocity, i.e. an intensification of motion near the bottom takes place for
all the modes.

When the topography is strong, i.e. γ � 1, the topographic and barotropic modes
are close to a purely topographic mode. With decreasing γ their frequencies increase
monotonically and approach the frequency (4.4) of a purely topographic wave as γ → 0
(or, which is the same, ∆ → ∞). The spatial structure of the modes is qualitatively
the same as in the case of a moderate topography.

The behaviour of baroclinic modes for a strong relief is more non-trivial. The
frequencies of these modes are always within the range (4.8c), i.e. they do not
exceed O(βLi) irrespective of the magnitude of γ. At the same time, the spatial
structure of the modes depends essentially on γ. With decreasing γ the large-scale
component decreases near the bottom together with the small-scale component in
the near-bottom boundary layer. Thus, by analogy with the two-layer case (Part 1)
the ‘displacement’ effect takes place here. As the height of the relief inhomogeneities
increases the large-scale baroclinic motion in the bottom layer decreases, which, in
turn, causes a decrease of the small-scale component. The resulting effect is that the
strong relief displaces the baroclinic mode from the near-bottom layer.

A more accurate analysis of baroclinic modes over a strong relief carried out in
§§ 5, 6, and 7 reveals the existence of a kind of resonance similar to that in the two-
layer model (Part 1). Namely, for γ = O(α−1/2)� 1 there exist isolated values of the
phase velocity cx = σ/k = cr for which the amplitude of the near-bottom small-scale
component increases strongly compared to the non-resonance case cx 6= cr , and the
small-scale velocity exceeds the large-scale one in the near-bottom boundary layer.
Moreover, in contrast with the non-resonance case, the large-scale component has
a local maximum at the bottom. As a result, the mode intensifies strongly near the
bottom. The ‘transition’ from the resonance regime to the non-resonance case takes
place in a small interval of the values of cx of length α−1 � 1 near the resonance
value cr . Thus, one can assume that the resonance effect is dynamically unimportant
because only a countable set of the values of cx leads to resonance (see (6.1)) and a
continuum of cx is non-resonant.

At the same time, the classification of the relief for N = const differs significantly
from that in the two-layer case. In the two-layer model the topography effect for
L ' Li is determined by the parameter ∆ = δ/αβ. In the case under consideration
this effect depends on the parameter γ = O

(
1/(∆α1/2)

) � ∆−1, i.e. the ‘efficiency’ of
the relief is substantially higher as compared to the two-layer case. For example,
∆ ' 1 corresponds to a moderate relief in the two-layer case and, at the same time,
to a strong relief for N = const because γ � 1 with ∆ = 1.

Another important distinction is the strong dependence of topographic mode
frequency σ(0)

tp on the stratification. It readily follows from (3.18) and (4.4) that

σ
(0)
tp = O(δα1/2)� δ (8.3)
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for L ' Li. Recall that the topographic mode frequency in a two-layer ocean is of the
order of δ irrespective of the density difference between the layers. One can say that
the continuous stratification increases the topographic mode frequency as compared
to the two-layer case.

Note that for the actual N(z) profile this enhanced efficiency of the bottom relief
can reduce considerably because the buoyancy frequency in the abyssal region is
small. Accordingly, the parameter s in (3.10) determining the topography effect can
also be very small.

Thus, we have considered the Rossby modes in two-layer and N = const models.
The natural question arises of what is the mode behaviour for the real continuous
oceanic stratification which is localized mainly in the upper layer of the ocean
separated by the main pycnocline from the deep abyssal region with very weak
density gradients. The analysis of the small-scale component p̃ for α� 1 performed
in § 3 can be readily generalized to the case of variable N if n(−1) = O(1). The
approximate solution for p̃ has the form (3.23) with the parameter α replaced by
αn(−1) = HN(−H)/f0Lb. The result is valid only if αn(−1) � 1, i.e. the near-
bottom layer thickness is much less than H . For the real ocean we have H = 4 km,
Lb = 10 km, f0 = 10−4 s−1, N(−H) = 10−3–10−4 s−1, i.e. the typical value of parameter
αn(−1) = O(1) and therefore the small-scale component is not confined to a thin near-
bottom boundary layer. At the same time, by analogy with the two-layer model the
main pycnocline region characterized by strong density gradients would be expected
to prevent the ingress of the small-scale motion into the upper layer. It is believed,
therefore, that the mode structure in the real ocean is similar to that in two-layer
model.
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Appendix
Equations (6.8b) and (7.4c) can be reduced easily to the form

sn+1 + sn−1 − 2n

B0

sn = Jn(B0), (A 1)

s̄n+1 + s̄n−1 − 2n

B0

s̄n = nJn(B0). (A 2)

The solution to (A1) is sought in the form

sn = pnJn(B0) + qnYn(B0), (A 3)

where Jn(B0) and Yn(B0) are linearly independent solutions of (A 1) with zero right-
hand side; and pn and qn must to be determined.

Substitution of (A 3) into (A 1) yields

pn+1Jn+1(B0) + qn+1Yn+1(B0) + pn−1Jn−1(B0) + qn−1Yn−1(B0)

−2n

B0

(
pnJn(B0) + qnYn(B0)

)
= Jn(B0). (A 4)
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Using the identities

2n

B0

pnJn(B0) = pnJn+1(B0) + pnJn−1(B0), (A 5a)

2n

B0

qnYn(B0) = qnYn+1(B0) + qnYn−1(B0) (A 5b)

we rewrite (A 4) as

γnJn+1(B0)− γn−1Jn−1(B0) + δnYn+1(B0)− δn−1Yn−1(B0) = Jn(B0), (A 6)

where

γn = pn+1 − pn, δn = qn+1 − qn. (A 7a, b)

We assume γn and δn to satisfy the equations

γnJn(B0) + δnYn(B0) = 0, (A 8a)

γnJn+1(B0) + δnYn+1(B0) = Jn(B0) (A 8b)

ensuring the validity of (A 6) for any n. It follows from (A 8) that

γn =
πB0

2
Jn(B0)Yn(B0), (A 9a)

δn = −πB0

2
J2
n (B0). (A 9b)

The functions γn and δn can be readily found from (A.7) and (A.9):

pn = p1 +
πB0

2

n−1∑
k=1

Jk(B0)Yk(B0), (A 10a)

qn = q1 − πB0

2

n−1∑
k=1

J2
k (B0), (A 10b)

where p1 and q1 are arbitrary constants. Taking into consideration (6.8a) and the
boundedness of sn as n→∞ we obtain

p1 = q1Y0(B0)/J2(B0), q1 =
πB0

2

∞∑
k=1

J2
k (B0). (A 11a, b)

Substitution of (A 10) and (A 11) into (A 3) results in

sn =
πB0

2

{
Jn(B0)

[
2
πB0

p1 +

n−1∑
k=1

Jk(B0)Yk(B0)

]
+ Yn(B0)

∞∑
k=n

J2
k (B0)

}
(A 12)

A similar solution to (A 2) can be obtained like manner.
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